(本小题满分12分)已知椭圆C:过点,离心率为,点分别为其左右焦点.(1)求椭圆C的标准方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点,且?若存在,求出该圆的方程;若不存在,请说明理由.
若函数f(x)=-+blnx在(1,+∞)上是减函数,求实数b的取值范围.
已知函数f(x)=x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;
已知函数f(x)=x3-ax-1. (1)若a=3时,求f(x)的单调区间; (2)若f(x)在实数集R上单调递增,求实数a的取值范围; (3)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由.
已知函数f(x)=lnx,g(x)=ax2+bx(a≠0),设函数f(x)的图象C1与函数g(x)的图象C2交于两点P、Q,过线段PQ的中点R作x轴垂线分别交C1、C2于点M、N,问是否存在点R,使C1在点M处的切线与C2在点N处的切线互相平行?若存在,求出点R的横坐标;若不存在,请说明理由.
求抛物线y=x2上点到直线x-y-2=0的最短距离.