若存在实常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”,已知函数,有下列命题:
①在内单调递增;
②和之间存在“隔离直线”,且的最小值为;
③和之间存在“隔离直线”,且的取值范围是;
④和之间存在唯一的“隔离直线”.
其中真命题的个数有( )
A.个 | B.个 | C.个 | D.个 |
相关知识点
推荐套卷
若存在实常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”,已知函数,有下列命题:
①在内单调递增;
②和之间存在“隔离直线”,且的最小值为;
③和之间存在“隔离直线”,且的取值范围是;
④和之间存在唯一的“隔离直线”.
其中真命题的个数有( )
A.个 | B.个 | C.个 | D.个 |