已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)
在图一所示的平面图形中,是边长为 的等边三角形,是分别以为底的全等的等腰三角形,现将该平面图形分别沿折叠,使所在平面都与平面垂直,连接,得到图二所示的几何体,据此几何体解决下面问题. (1)求证:; (2)当时,求三棱锥的体积; (3)在(2)的前提下,求二面角的余弦值.
不等式选讲 设 (1)当a=l时,解不等式; (2)若恒成立,求正实数a的取值范围。
坐标系与参数方程 已知圆锥曲线为参数)和定点F1,F2是圆锥曲线的左右焦点。 (1)求经过点F2且垂直于直线AF1的直线l的参数方程; (2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AF2的极坐标方程。
如图,已知圆外有一点,作圆的切线,为切点,过的中点,作割线,交圆于、两点,连接并延长,交圆于点,连续交圆于点,若. (1)求证:△∽△; (2)求证:四边形是平行四边形.
已知函数,其中是自然对数的底数,. (1)若,求曲线在点处的切线方程; (2)若,求的单调区间; (3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.