【2015高考重庆,文20】如图,三棱锥P-ABC中,平面PAC平面ABC,ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF//BC.(Ⅰ)证明:AB平面PFE.(Ⅱ)若四棱锥P-DFBC的体积为7,求线段BC的长.
(本小题满分10分)已知函数(1)求函数的最小正周期T;(2)当时,求函数的最大值和最小值。
如图,直四棱柱中,底面是的菱形,,,点在棱上,点是棱的中点.(1)若是的中点,求证:;(2)求出的长度,使得为直二面角.
.若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,求:(1)点P在直线上的概率;(2)点P在圆外的概率.
袋子中有红、黄、白3种颜色的球各1个,从中每次任取一个,有放回的抽取3次,求(1)3个球全是红球的概率;(2)3个球不全相同的概率;(3)3个球颜色全不相同的概率.
为了让学生了解更多“社会法律”知识,某中学举行了一次“社会法律知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号 ;(2)填充频率分布表的空格1 2 3 4 并作出频率分布直方图;