【2015高考浙江,文19】如图,已知抛物线,圆,过点作不过原点O的直线PA,PB分别与抛物线和圆相切,A,B为切点.(1)求点A,B的坐标;(2)求的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.
(本小题满分14分) 已知A,B,C是△ABC的三个内角,向量,且. (1)求角A (2)若,求.
((本小题满分15分) 已知圆C过定点F,且与直线相切,圆心C的轨迹为E,曲线E与直线:相交于A、B两点。 (I)求曲线E的方程; (II)在曲线E上是否存在与的取值无关的定点M,使得MA⊥MB?若存在,求出所有符合条件的定点M;若不存在,请说明理由。
(本小题满分14分)已知函数 (1)当时,求函数的单调区间和极值; (2)当时,若,均有,求实数的取值范围; (3)若,,且,试比较与的大小.
(本小题满分12分) 2010年推出一种新型家用轿车,购买时费用为14.4万元,每年应交付保险费.养路费及汽油费共0.7万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元. (1)设该辆轿车使用n年的总费用(包括购买费用.保险费.养路费.汽油费及维修费)为f(n),求f(n)的表达式; (2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?
(本小题满分12分) 已知四棱锥底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F分别是线段AB.BC的中点, (1)证明:PF⊥FD; (2)在PA上找一点G,使得EG∥平面PFD;. (3)若与平面所成的角为,求二面角的余弦值.