(本小题满分13分)设椭圆C:的离心率,点M在椭圆C上,点M到椭圆C的两个焦点的距离之和是4.(1)求椭圆C的方程;(2)若椭圆的方程为,椭圆的方程为,则称椭圆是椭圆的倍相似椭圆.已知椭圆是椭圆C的3倍相似椭圆.若椭圆C的任意一条切线交椭圆于M,N两点,O为坐标原点,试研究当切线变化时面积的变化情况,并给予证明.
已知等比数列中,,,,分别为△ABC的三个内角A,B,C的对边,且.(1)求数列的公比;(2)设集合,且,求数列的通项公式.
(本小题满分13分)已知数列满足:.(1)求数列的通项公式;(2)证明:
某通讯公司需要在三角形地带OAC区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC内,乙中转站建在区域AOB内.分界线OB固定,且百米,边界线AC始终过点B,边界线OA、OC满足∠AOC=75°,∠AOB=30°,∠BOC=45°,设百米,百米.(1)试将表示成的函数,并求出函数的解析式;(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.
已知数列满足:,其中.(1)求证:数列是等比数列;(2)令,求数列的最大项.
已知.当时,解不等式;(2)若,解关于的不等式.