(本小题满分13分)设椭圆C:的离心率,点M在椭圆C上,点M到椭圆C的两个焦点的距离之和是4.(1)求椭圆C的方程;(2)若椭圆的方程为,椭圆的方程为,则称椭圆是椭圆的倍相似椭圆.已知椭圆是椭圆C的3倍相似椭圆.若椭圆C的任意一条切线交椭圆于M,N两点,O为坐标原点,试研究当切线变化时面积的变化情况,并给予证明.
已知函数是R上的奇函数且在上是增函数,若>0, 求的取值范围
设集合,,若,求的值及
在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-成等比数列. (1)求a2,a3,a4,并推出an的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{an}所有项的和.
试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:an+cn>2bn.
若n为大于1的自然数,求证:.