(本小题14分)已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存过点的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.
现有一批产品共有10件,其中8件为正品,2件为次品. (1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率. (2)如果从中一次取3件,求3件都是正品的概率.
在平面直角坐标系xOy中,平面区域W中的点的坐标(x,y)满足从区域W中随机取点M(x,y). (1)若x∈Z,y∈Z,求点M位于第一象限的概率. (2)若x∈R,y∈R,求|OM|≤2的概率.
某中学为研究学生的身体素质与课外体育锻炼时间的关系,对400名高一学生的一周课外体育锻炼时间进行调查,结果如下表所示:
现采用分层抽样的方法抽取容量为20的样本. (1)其中课外体育锻炼时间在分钟内的学生应抽取多少人? (2)若从(1)中被抽取的学生中随机抽取2名,求这2名学生课外体育锻炼时间均在分钟内的概率.
做抛掷两颗骰子的试验:用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第二颗骰子出现的点数,(1)写出试验的基本事件;(2)求事件“出现点数之和大于8”的概率.
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验. (1)求选取的2组数据恰好是相邻两个月的概率. (2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程=x+. (3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想? (参考公式:==,=-).