(本小题满分12分)从射击、乒乓球、跳水、田径四个大项的雅典奥运冠军中选出6名作“夺冠之路”的励志报告. (1)若每个大项中至少选派一人,则名额分配有几种情况? (2)若将6名冠军分配到5个院校中的4个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法?
、(本小题满分14分)已知定义域为的函数对任意的,,且(1)求的值;(2)若为单调函数,,向量,,是否存在实数,对任意恒成立?若存在,求出的取值范围;若不存在,说明理由.
(本小题满分13分)已知数列,其前项和为.(1)求数列的通项公式,并证明数列是等差数列;(2)如果数列满足,请证明数列是等比数列;(3)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值.
(本小题满分12分)已知平面向量,,函数.(1)写出函数的单调递减区间;(2)设,求直线与在闭区间上的图像的所有交点坐标.
(本小题满分12分)在△ABC中,设内角A、B、C的对边分别为a、b、c,(Ⅰ)求角C的大小; (Ⅱ)若且,求的面积.
(本小题满分12分)设函数,若不等式的解集为。(1)求的值;(2)若函数在上的最小值为1,求实数的值。