已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左焦点为 F ( - c , 0 ) ,离心率为 3 3 ,点M在椭圆上且位于第一象限,直线 F M 被圆 x 2 + y 2 = b 2 4 截得的线段的长为 c , F M = 4 3 3
(Ⅰ)求直线 F M 的斜率; (Ⅱ)求椭圆的方程; (Ⅲ)设动点 P 在椭圆上,若直线 F P 的斜率大于 2 ,求直线 O P ( O 为原点)的斜率的取值范围.
设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角 为的直线交椭圆M于A,B两点。 (Ⅰ)求椭圆M的方程; (Ⅱ)求证| AB | =; (Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB| + |CD|的最小值。
已知定点F(1,0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP到点N,且 (Ⅰ)求动点N的轨迹方程; (Ⅱ)直线l与动点N的轨迹交于A、B两点,若,且, 求直线l的斜率k的取值范围.
双曲线的中心在原点,右焦点为,渐近线方程为. (Ⅰ)求双曲线的方程; (Ⅱ)设直线:与双曲线交于、两点,问:当为何值时,以为直径的圆过原点。
若圆C经过点和,且圆心C在直线上,求圆C的方程.
已知命题p:方程有两个不相等的实根; 命题q:不等式的解集为R; 若p∨q为真,p∧q为假,求实数m的取值范围。