已知函数 f ( x ) = 2 x , g ( x ) = x 2 + a x (其中 a ∈ R ).对于不相等的实数 x 1 , x 2 ,设 m = f ( x 1 ) - f ( x 2 ) x 1 - x 2 , n = g ( x 1 ) - g ( x 2 ) x 1 - x 2 ,现有如下命题: ①对于任意不相等的实数 x 1 , x 2 ,都有 m > 0 ; ②对于任意的 a 及任意不相等的实数 x 1 , x 2 ,都有 n > 0 ; ③对于任意的 a ,存在不相等的实数 x 1 , x 2 ,使得 m = n ; ④对于任意的 a ,存在不相等的实数 x 1 , x 2 ,使得 m = - n . 其中真命题有(写出所有真命题的序号).
对于实数x、y,定义新运算x*y=ax+by+1,其中a、b是常数,等式右边是通常的加法和乘法运算.若3*5=15,4*7=28,则1*1=_________.
已知函数y=f(x)的反函数f-1(x)=log(x-cos2),则方程f(x)=1的解是_________.
若双曲线离心率为2,则它的两条渐近线的夹角等于_________.
64个正数排成8行8列,如图示:在符号中,表示该数所在的行数,表示该数所在的列数,已知每一行都成等差数列,每一列都成等比数列,(且每列公比都相等),,则的通项公式= .
已知关于的二次函数设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和,则函数在区间[上是增函数的概率为;设点(,)是区域内的随机点,则函数上是增函数的概率为.