在四棱锥中,底面为直角梯形,,侧面底面,,.(1)若中点为.求证:;(2)若,求直线与平面所成角的正弦值.
(本小题满分12分)如图,底面是正三角形的直三棱柱中,D是BC的中点,. (1)求证:平面;(2)求点A1 到平面的距离.
(本小题满分12分)某市统计局就某地居民的月收入调查了 10 000 人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1500)).(1)求居民收入在[3 000,3 500)的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这 10 000 人中按分层抽样方法抽出 100 人作进一步分析,则月收入在[2 500,3 000)的这段应抽取多少人?
(本小题满分12分)在锐角中,内角所对的边分别为.已知(1)求角的大小;(2)若,求的面积的最大值
(本小题满分10分)选修4-5:不等式选讲已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为.(Ⅰ)求的值;(Ⅱ)若是正实数,且满足,求证:.
(本小题满分10分)选修4-4:坐标系与参数方程将圆每一点的,横坐标保持不变,纵坐标变为原来的2倍,得到曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线:与C的交点为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求线段的中点且与垂直的直线的极坐标方程.