(本小题满分15分)如图甲,是边长为6的等边三角形,,分别为、靠近、的三等分点,点为边的中点.线段交线段于点,将沿翻折,使平面⊥平面,连接、、形成如图乙所示的几何体.(Ⅰ)求证⊥平面;(Ⅱ)求二面角的余弦值.
.提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数. (Ⅰ)当时,求函数的表达式; (Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)
已知直线,若以点M(2,0)为圆心的圆与直线相切与点P,且点P在y轴上。 (1)求圆M的方程; (2)若点N为定点(-2,0),点A在圆M上运动,求NA中点B的轨迹方程
已知不等式的解集为A,不等式的解集是B. (1)求;(2)若不等式的解集是求的解集.
对某电子元件进行寿命追踪调查,情况如下.
(1)列出频率分布表; (2)画出频率分布直方图; (3)估计元件寿命在100~400 h以内的在总体中占的比例;
已知关于x的函数f(x)=-+bx2+cx+bc,其导函数为.令g(x)=∣∣,记函数g(x)在区间[-1、1]上的最大值为M. (Ⅰ)如果函数f(x)在x=1处有极值-,试确定b、c的值: (Ⅱ)若∣b∣>1,证明对任意的c,都有M>2: (Ⅲ)若M≥K对任意的b、c恒成立,试求k的最大值