(本小题满分15分)如图,在四棱锥中,平面,,四边形满足,且,点为中点,点为边上的动点,且.(Ⅰ)求证:平面平面;(Ⅱ)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.
已知函数. (1)若函数在时取得极值,求实数的值; (2)若对任意恒成立,求实数的取值范围.
某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元的管理费,预计当每件产品的售价为元()时,一年的销售量为万件. (1)求该分公司一年的利润(万元)与每件产品的售价的函数关系式; (2)当每件产品的售价为多少元时,该分公司一年的利润最大?并求出的最大值.
已知抛物线过点. (1)求抛物线的方程,并求其准线方程; (2)过焦点且斜率为的直线与抛物线交于两点,求的面积.
如图所示,四棱锥中,底面是边长为的正方形,侧棱底面,且,是的中点. (1)证明:平面; (2)求三棱锥的体积.
已知函数. (1)求函数在点处的切线方程; (2)求函数的单调区间.