(本小题满分15分)如图,在四棱锥中,平面,,四边形满足,且,点为中点,点为边上的动点,且.(Ⅰ)求证:平面平面;(Ⅱ)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.
已知等差数列满足:,,的前n项和为. (Ⅰ)求及; (Ⅱ)令bn=(),求数列的前n项和。
已知向量,,且 (1)求的取值范围; (2)求函数的最小值,并求此时x的值
设等差数列的公差且记为数列的前项和. (1)若、、成等比数列,且、的等差中项为求数列的通项公式; (2)若、、且证明: (3)若证明:
已知函数,为函数的导函数. (1)设函数的图象与轴交点为曲线在点处的切线方程是,求的值; (2)若函数,求函数的单调区间.
某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为第二、第三门课程取得优秀成绩的概率分别为且不同课程是否取得优秀成绩相互独立,记为该生取得优秀成绩的课程数,其分布列为
(1)求该生至少有1门课程取得优秀成绩的概率; (2)求,的值; (3)求数学期望