(本小题满分16分)已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且APB面积的最大值为2.(1)求椭圆C的方程及离心率;(2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
如图,在△ABC中,设=,=,=,=λ,(0<λ<1),=μ(0<μ<1),试用向量,表示.
已知两点M(-1,0),N(1,0),且点P使成公差小于零的等差数列. (1)点P的轨迹是什么曲线? (2)若点P坐标为(x0,y0),Q为与的夹角,求tanθ
p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有2个小于1的正根,试分析p是q的什么条件。(充要条件)
已知抛物线C:y=-x2+mx-1和点A(3,0),B(0,3),求抛物线C与线段AB有两个不同交点的充要条件。
已知数列{an}、{bn}满足bn=,求证:数列{an}成等差数列的充要条件是数列{bn}也是等差数列。