(本小题满分12分)已知函数,.(1)求函数的单调递增区间;(2)在中,角所对的边分别为,,且向量与垂直,求的面积.
(本小题满分12分)在直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间。(1)为使物体落在D内,求a的取值范围;(2)若物体运动时又经过点P(2,8.1),问它能否落在D内?并说明理由。
(本小题满分12分)已知函数 。(1)若,求的最大值和最小值;(2)若,求的值。
(本小题满分13分)设函数。(1)求的单调区间;(2)若当时,(其中)不等式恒成立,求实数的取值范围;(3)试讨论关于的方程:在区间上的根的个数。
(本小题满分14分)已知是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足: 。(1)求f(0),f(1)的值;(2)判断的奇偶性,并证明你的结论;(3)若,求数列{un}的前n项的和Sn 。
((本题满分14分)某射手每次射击击中目标的概率是,且各次射击的结果互不影响。(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总得分数,求ξ的分布列.