(本小题满分13分)设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足, ,且是过、、三点的圆上的点,到直线的最大距离等于椭圆长轴的长,求椭圆的方程;(Ⅰ)求椭圆的方程;(Ⅱ)若过右焦点作斜率为的直线与椭圆交于、两点,线段的中垂线与轴相交于点,求实数的取值范围.
已知动点M到定点与到定点的距离之比为3.(Ⅰ)求动点M的轨迹C的方程,并指明曲线C的轨迹;(Ⅱ)设直线,若曲线C上恰有两个点到直线的距离为1,求实数的取值范围。
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,G为PD的中点,E是AB的中点. (Ⅰ)求证:AG∥平面PEC; (Ⅱ)求点G到平面PEC的距离.
某高校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.(Ⅰ)求出第4组的频率,并补全频率分布直方图;(Ⅱ)根据样本频率分布直方图估计样本的中位数;(Ⅲ)如果用分层抽样的方法从“优秀”和“良好” 的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:
(Ⅰ)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出关于的线性回归方程;(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅰ)中所得的线性回归方程是否可靠?(参考公式:,)(参考数据:,)
已知为等差数列,且,为的前项和.(Ⅰ)求数列的通项公式及;(II)设,求数列的通项公式及其前项和.