(本小题满分14分)如图,在四棱锥中,底面为直角梯形,//,,平面底面,为的中点,是棱的中点,(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)求二面角的余弦值.
已知数列的前n项和为,且.(1)求数列的通项;(2)若数列中,,点P(,)在直线上,记的前n项和为,当时,试比较与的大小.
(13分)已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.(1)求椭圆C的方程;(2)过点S(,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.
(12分)如图,在棱长为2的正方体ABCD -A1B1C1D1中,E、F分别为A1D1和CC1 的中点.(1)求证:EF∥平面ACD1;(2)求面EFB与底面ABCD所成的锐二面角余弦值的大小.
(12分)某电视台综艺频道主办一种有奖过关游戏,该游戏设有两关,只有过了第一关,才能玩第二关,每关最多玩两次,连续两次失败者被淘汰出局.过关者可获奖金,只过第一关获奖金900元,两关全过获奖金3600元.某同学有幸参与了上述游戏,且该同学每一次过关的概率均为,各次过关与否互不影响.在游戏过程中,该同学不放弃所有机会.(1)求该同学仅获得900元奖金的概率;(2)若该同学已顺利通过第一关,求他获得3600元奖金的概率;(3)求该同学获得奖金的数学期望(精确到元).
(12分)已知向量,,函数.(1)求函数的最小正周期;(2)若时,求的单调递减区间;