(本小题满分12分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点.(1)求椭圆的标准方程; (2)已知点,连结,过点作垂直于轴的直线,设直线与直线交于点,试探索当变化时,是否存在一条定直线,使得点恒在直线上?若存在,请求出直线的方程;若不存在,请说明理由.
(本小题满分12分)设函数,曲线过点,且在点处的切线方程为. (Ⅰ)求,的值; (Ⅱ)证明:当时,; (Ⅲ)若当时,恒成立,求实数的取值范围.
(本小题满分12分)如图,抛物线:与椭圆:在第一象限的交点为,为坐标原点,为椭圆的右顶点,的面积为. (Ⅰ)求抛物线的方程; (Ⅱ)过点作直线交于、两点,射线、分别交于、两点,记和的面积分别为和,问是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分)为等腰直角三角形,,,、分别是边和的中点,现将沿折起,使面面,、分别是边 和的中点,平面与、分别交于、两点. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值; (Ⅲ)求的长.
(本小题满分12分)已知数列满足,,令. (Ⅰ)证明:数列是等差数列; (Ⅱ)求数列的通项公式.
(本小题满分12分)设是锐角三角形,三个内角,,所对的边分别记为,,,并且. (Ⅰ)求角的值; (Ⅱ)若,,求,(其中).