(本小题满分10分)已知直线的参数方程为(其中为参数),曲线:,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,两种坐标系中取相同长度单位。(1)求直线的普通方程及曲线的直角坐标方程;(2)在曲线上是否存在一点,使点到直线的距离最大?若存在,求出距离最大值及点.若不存在,请说明理由。
已知函数. ⑴ 求函数的单调区间; ⑵ 如果对于任意的,总成立,求实数的取值范围; ⑶ 是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.
如图,曲线与曲线相交于、、、四个点. ⑴ 求的取值范围; ⑵ 求四边形的面积的最大值及此时对角线与的交点坐标.
如图,是矩形中边上的点,为边的中点,,现将沿边折至位置,且平面平面. ⑴ 求证:平面平面; ⑵ 求四棱锥的体积.
2012年第三季度,国家电网决定对城镇居民民用电计费标准做出调整,并根据用电情况将居民分为三类: 第一类的用电区间在,第二类在,第三类在(单位:千瓦时). 某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示. ⑴ 求该小区居民用电量的中位数与平均数; ⑵ 本月份该小区没有第三类的用电户出现,为鼓励居民节约用电,供电部门决定:对第一类每户奖励20元钱,第二类每户奖励5元钱,求每户居民获得奖励的平均值; ⑶ 利用分层抽样的方法从该小区内选出5户居民代表,若从该5户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率.
在三角形中,. ⑴ 求角的大小; ⑵ 若,且,求的面积.