(本小题满分13分)已知抛物线,圆.(1)在抛物线上取点,的圆周上取一点,求的最小值;(2)设为抛物线上的动点,过作圆的两条切线,交抛物线于、点,求中点的横坐标的取值范围.
设△ABC的内角A,B,C的对边分别为a,b,c.已知,求: (Ⅰ)A的大小; (Ⅱ)若 ,求面积的最大值.
如图,在长为52宽为42的大矩形内有一个边长为18的小正方形,现向大矩形内随机投掷一枚半径为1的圆片,求:(Ⅰ)圆片落在大矩形内部时,其圆心形成的图形面积;(Ⅱ)圆片与小正方形及内部有公共点的概率.
执行如图所示的程序框图.(Ⅰ)当输入n=5时,写出输出的a的值;(Ⅱ)当输入n=100时,写出输出的T的值.
一个容量为M的样本数据,其频率分布表如下.(Ⅰ)表中a= ,b = ;(Ⅱ)画出频率分布直方图;(Ⅲ)用频率分布直方图,求出总体的众数及平均数的估计值. 频率分布表
一个口袋内装有大小相同的5 个球,其中3个白球分别记为A1、A2、A3;2个黑球分别记为B1、B2,从中一次摸出2个球.(Ⅰ)写出所有的基本事件;(Ⅱ)求摸出2球均为白球的概率.