设等差数列{an}的前n项和为Sn,已知,>0,<0,(1)求公差d的取值范围;(2)指出、、…,中哪一个最大,并说明理由。
(本小题满分12分)己知函数在处取最小值.(1)求的值;(2)在△ABC中,a、b、c分别是A、B、C的对边,已知,,,求角C.
(本小题满分12分).已知函数在点处的切线方程为.(1)求的值;(2)设(为自然对数的底数),求函数在区间上的最大值;(3)证明:当时,.
(本小题满分12分)设正项数列的前项和为,且满足对().(1)求,,的值;(2)根据(1),猜想数列的通项公式,并证明你的结论;(3)求证:当时,.
(本小题满分12分)如图所示,是一个矩形花坛,其中米,米.现将矩形花坛扩建成一个更大的矩形花坛,要求:在上,在上,对角线过点,且矩形的面积小于150平方米.(1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并确定函数的定义域;(2)当的长度是多少时,矩形的面积最小?并求最小面积.
(本小题满分12分)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝以上为“常喝”,体重超过为“肥胖”.
已知在全部人中随机抽取1人,抽到肥胖的学生的概率为.(1)请将上面的列联表补充完整;(2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由;(3)已知常喝碳酸饮料且肥胖的学生中恰有2名女生,现从常喝碳酸饮料且肥胖的学生中随机抽取2人参加一个有关健康饮食的电视节目,求恰好抽到一名男生和一名女生的概率.参考数据: