(本小题满分12分)已知函数对一切都有.(1)求证:是奇函数;(2)若,用表示.
(本小题满分14分)已知曲线:,数列的首项,且当时,点恒在曲线上,数列满足。(1)试判断数列是否是等差数列?并说明理由;(2)求数列和的通项公式;(3)设数列满足,试比较数列的前项和与2的大小。
(本小题满分14分)如图,沿等腰直角三角形的中位线,将平面折起,平面⊥平面,得到四棱锥,,设、的中点分别为、,(1)求证:平面⊥平面(2)求证: (3)求平面与平面所成锐二面角的余弦值。
(本小题满分12分)甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.若第二局比赛结束时比赛停止的概率为.(1)求的值;(2)设表示比赛停止时比赛的局数,求随机变量的分布列和数学期望。
(本小题满分14分)如图所示,已知以点为圆心的圆与直线相切.过点的动直线与圆相交于,两点,是的中点,直线与相交于点.(1)求圆的方程;(2)当时,求直线的方程.(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.
(本小题满分13分)已知以点为圆心的圆与轴交于点、,与轴交于点、,其中为原点.(1)求证:△的面积为定值;(2)设直线与圆交于点、, 若,求圆的方程.