已知椭圆C:过点,且椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若动点P在直线上,过P作直线交椭圆C于M,N两点,且P为线段MN中点,再过P作直线.证明:直线恒过定点,并求出该定点的坐标.
已知定义域为的函数是奇函数.(1)求的值;(2)若对任意的,不等式恒成立,求的取值范围.
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为个,零件的实际出厂单价为元.写出函数的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
已知函数;(1)若的定义域为,求实数的取值范围.(2)若的值域为,则实数的取值范围.(3)求函数的递减区间.
已知是上的奇函数,且当时,;(1)求的解析式;(2)作出函数的图象(不用列表),并指出它的增区间.
计算:(1)已知全集为,集合,,求.(2)