(本小题满分12分)如图,在四棱锥P—ABCD中,PA⊥平面ABCD,底面ABCD为梯形,BC∥AD,AB⊥AD,PA=AB=BC=1,AD=2.(1)求三棱锥P—ACD的外接球的表面积;(2)若M为PB的中点,问在AD上是否存在一点E,使AM∥平面PCE?若存在,求的值;若不存在,说明理由.
(12分)锐角三角形ABC的内角A,B,C的对边分别为(1)求B的大小; (2)求的取值范围.
(12分) 已知函数(1)当时,求函数的最大值;(2)设的内角的对应边分别为,且,若向量与向量共线,求的值.
(12分)已知函数f(x)=cos(2x-)+2sin(x-)sin(x+).(1)求函数f(x)的最小正周期; (2)求函数f(x)在区间[-,]上的值域.
.设函数(Ⅰ)当曲线处的切线斜率(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数有三个互不相同的零点0,,且。若对任意的,恒成立,求m的取值范围。
.已知两定点,动点满足。(1) 求动点的轨迹方程;(2)设点的轨迹为曲线,试求出双曲线的渐近线与曲线的交点坐标。