已知椭圆的两焦点为,,离心率.(1)求此椭圆的方程;(2)设直线,若与此椭圆相交于,两点,且等于椭圆的短轴长,求的值;
(本小题满分13分)如图,已知四棱锥P-ABCD的底面是菱形,∠BCD=60°,点E是BC边的中点,AC与DE交于点O,PO⊥平面ABCD.(Ⅰ)求证:PD⊥BC;(Ⅱ)若AB=6,PC=6,求二面角P-AD-C的大小;(Ⅲ)在(Ⅱ)的条件下,求异面直线PB与DE所成角的余弦值.
.(本小题满分13分)将3封不同的信投进A、B、C、D这4个不同的信箱、假设每封信投入每个信箱的可能性相等.(Ⅰ)求这3封信分别被投进3个信箱的概率;(Ⅱ)求恰有2个信箱没有信的概率;(Ⅲ)求A信箱中的信封数量的分布列和数学期望.
.(本小题满分13分)已知函数f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期为.(Ⅰ)求ω的值;(Ⅱ)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时f(x)的值域.
(本小题满分14分)已知直线:与圆:相交于、两点,点满足.(Ⅰ)当时,求实数的值;(Ⅱ)当时,求实数的取值范围;(Ⅲ)设、是圆:上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.
((本小题满分13分)已知三个正数满足.(Ⅰ)若是从中任取的三个数,求能构成三角形三边长的概率;(Ⅱ)若是从区间内任取的三个数,求能构成三角形三边长的概率.