设有平面α,β,γ两两互相垂直,且α,β,γ三个平面有一个公共点A,现有一个半径为1的小球与α,β,γ这三个平面均相切,则小球上任一点到点A的最近距离为( )
已知正三棱锥P-ABC的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为( )
若函数满足f(1)=0,则( )
巳知点(x,y)在ΔABC所包围的阴影区域内(包含边界),若B(3,)是使得z=ax-y取得最大值的最优解,则实数a的取值范围为( )
现釆用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器给出 0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该射击运动员射击4次至少击中3次的概率为( )A. 0.852 B. 0.8192 C O.8 D. 0.75
已知等比数列{an},且,则的值为( )