(本小题满分10分)选修4—1:几何证明选讲如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点,垂直交圆于点.(1)证明:;(2)设圆的半径为1,,延长交于点,求外接圆的半径.
已知f(x)=(1)求f(),f[f(-)]值;(2)若f(x)=,求x值;(3)作出该函数简图;(4)求函数值域.
设U={x|-1≤x≤7},A={x|0<x<3},B={x|a-2≤x≤a+1},若a∈N+,且BCUA,求a.
已知全集U=R,函数y=+的定义域为A,函数y=的定义域为B.(1)求集合A、B.(2)(CUA)∪(CUB).
(本小题满分14分)设椭圆的离心率为=,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.(1)求椭圆的方程;(2)椭圆上一动点关于直线的对称点为,求的取值范围.
(本小题满分14分)已知等差数列{an}中,a1=-1,前12项和S12=186.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足,记数列{bn}的前n项和为Tn,求证: (n∈N*).