如图,取一个底面半径和高都为R的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R的半球放在同一水平面上.用一平行于平面的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为和,那么
为虚数单位,则等于()
若两条异面直线所成的角为,则称这对异面直线为“黄金异面直线对”,在连结正方体各顶点的所有直线中,“黄金异面直线对”共有()
已知函数满足对任意,都有成立,则实数的取值范围是()
等差数列的前项和为,,,则()
下列结论正确的是()