对数列{an},如果∃k∈N*及λ1,λ2,…,λk∈R,使an+k=λ1an+k﹣1+λ2an+k﹣2+…+λkan成立,其中n∈N*,则称{an}为k阶递归数列.给出下列三个结论:①若{an}是等比数列,则{an}为1阶递归数列;②若{an}是等差数列,则{an}为2阶递归数列;③若数列{an}的通项公式为,则{an}为3阶递归数列.其中,正确结论的个数是( )
已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则 的值为() A. B. C.2 D.3
如图,已知PA为⊙O的切线,PBC为⊙O的割线,PA=,PB=BC,⊙O的半径OC=5,那么弦BC的弦心距OM=()
如图,两个同心圆的半径分别为3cm和5cm,弦AB与小圆相切于点C,则AB的长为()
如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么点P与O间的距离是() A.16 B.20 C. D.
如图,过⊙O外一点P作一条直线与⊙O交于A、B两点,已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为() A.4 B.6 C.8 D.10