(本小题满分15分)如图,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为设S的眼睛距地面的距离米.(1)求摄影者到立柱的水平距离和立柱的高度;(2)立柱的顶端有一长2米的彩杆MN绕其中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
若函数y= f(2x+1)的定义域为[ 1,2 ],求f (x)的定义域.已知函数f(x)的定义域为[-,],求函数g(x)=f(3x)+f()的定义域.
直线经过点与轴、轴分别交于A、B两点,且|AP|:|PB|=3:5, 求直线的方程
已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线方程.
在直线方程y=kx+b中,当x∈[-3,4]时,y∈[-8,13],求此直线方程
过点作一直线,使它与两坐标轴相交且与两轴所围成的三角形面积为