(本小题满分14分)已知函数(a为实常数)。(1)若a=1,求的单调区间;(2)若,设在区间的最小值为,求的表达式;(3)设,若函数在区间上是增函数,求实数a的取值范围。
(本小题满分14分)设函数(,). (1)若函数在其定义域内是减函数,求的取值范围; (2)函数是否有最小值?若有最小值,指出其取得最小值时的值,并证明你的结论.
(本题14分)用长度为18cm的钢条围成一个长方体形状的框架,要求长方体的长和宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积为多少?
(本题14分)已知,,设. (1)求函数的图像的对称轴及其单调递增区间; (2)当,求函数的值域及取得最大值时的值; (3)若分别是锐角的内角的对边,且,,试求的面积.
(本题14分)已知函数 (1)讨论的单调区间; (2)若在处取得极值,直线y=m与的图象有三个不同的交点,求m的取值范围。
(本题12分)函数。 (1)求的最小正周期; (2)若,,求的值。