(本小题满分12分)已知动圆过定点,且在轴上截得弦长为,设该动圆圆心的轨迹为曲线(1)求曲线方程;(2)点为直线:上任意一点,过作曲线的切线,切点分别为,求证:直线 恒过定点,并求出该定点.
(本题满分10分) 已知函数(a、b是常数且a>0,a≠1)在区间[-,0]上有ymax=3,ymin=,试求a和b的值.。
.(本题满分10分) 已知函数()在一个周期内的图象如图, (Ⅰ) 求函数的解析式。 (Ⅱ)求函数的单调递增区间。
若平面内给定三个向量 (1)求。 (2)求满足的实数m,n的值。
.(本小题满分12分) 已知函数. (1)求函数在区间上的最大值、最小值; (2)已知,求证:在区间上,函数的图象在函数的图象的下方.
(本小题满分12分) 数列满足: (1)求数列的通项公式;(2)设数列的前n项和分别为An、Bn,问是否存在实数,使得为等差数列?若存在,求出的值;若不存在,说明理由。