用反证法证明命题“设a,b∈R,|a|+|b|<1,a2﹣4b≥0那么x2+ax+b=0的两根的绝对值都小于1”时,应假设( )
A.方程x2+ax+b=0的两根的绝对值存在一个小于1 |
B.方程x2+ax+b=0的两根的绝对值至少有一个大于等于1 |
C.方程x2+ax+b=0没有实数根 |
D.方程x2+ax+b=0的两根的绝对值都不小于1 |
推荐套卷
用反证法证明命题“设a,b∈R,|a|+|b|<1,a2﹣4b≥0那么x2+ax+b=0的两根的绝对值都小于1”时,应假设( )
A.方程x2+ax+b=0的两根的绝对值存在一个小于1 |
B.方程x2+ax+b=0的两根的绝对值至少有一个大于等于1 |
C.方程x2+ax+b=0没有实数根 |
D.方程x2+ax+b=0的两根的绝对值都不小于1 |