(本小题13分)如图,分别过椭圆:左右焦点、的动直线相交于点,与椭圆分别交于不同四点,直线的斜率、、、满足.已知当轴重合时,,.(1)求椭圆的方程;(2)是否存在定点,使得为定值.若存在,求出点坐标并求出此定值,若不存在,说明理由.
(本小题满分14分) 在正三棱柱中,点是的中点,. (1)求证:∥平面; (2)试在棱上找一点,使.
(本小题满分14分) 设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB. (1)求角A的大小; (2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.
已知等比数列中,各项都是正数,且成等差数列,则等于.
已知数列{an}的首项a1=a,Sn是数列{an}的前n项和,且满足:=3n2an+,an≠0,n≥2,n∈N*. (1)若数列{an}是等差数列,求a的值; (2)确定a的取值集合M,使a∈M时,数列{an}是递增数列.
(本题满分16分) 设函数. (1)若=1时,函数取最小值,求实数的值; (2)若函数在定义域上是单调函数,求实数的取值范围; (3)若,证明对任意正整数,不等式都成立.