(本小题14分)如图在四棱锥中,底面是矩形,平面,,点是中点,点是边上的任意一点.(1)当点为边的中点时,判断与平面的位置关系,并加以证明;(2)证明:无论点在边的何处,都有;(3)求三棱锥的体积.
如图,已知抛物线焦点为,直线经过点且与抛物线相交于,两点 (Ⅰ)若线段的中点在直线上,求直线的方程; (Ⅱ)若线段,求直线的方程
已知函数,曲线在点处的切线是: (Ⅰ)求,的值; (Ⅱ)若在上单调递增,求的取值范围
如图,三棱锥中,, (Ⅰ)求证:; (Ⅱ)若,是的中点,求与平面所成角的正切值
已知等比数列单调递增,,, (Ⅰ)求; (Ⅱ)若,求的最小值
在中,已知. (Ⅰ)求的值; (Ⅱ)若,,求的面积.