为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月处理量最小为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工立品价值为100元.(1)该单位月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少要补贴多少元才能使该单位不亏损?
在 △ ABC 中,角 A 、 B 、 C 所对的边长分别为 a 、 b 、 c , b = a + 1 , c = a + 2 ..
(1)若 2 sin C = 3 sin A ,求 △ ABC 的面积;
(2)是否存在正整数 a ,使得 △ ABC 为钝角三角形?若存在,求出 a 的值;若不存在,说明理由.
记 S n 是公差不为0的等差数列 a n 的前n项和,若 a 3 = S 5 , a 2 a 4 = S 4 .
(1)求数列 a n 的通项公式 a n ;
(2)求使 S n > a n 成立的n的最小值.
已知函数 f x = x 1 - ln x .
(1)讨论 f x 的单调性;
(2)设 a , b 为两个不相等的正数,且 b ln a - a ln b = a - b ,证明: 2 < 1 a + 1 b < e .
在平面直角坐标系 xOy 中,已知点 F 1 - 17 , 0 、 F 2 17 , 0 M F 1 - M F 2 = 2 ,点 M 的轨迹为 C .
(1)求 C 的方程;
(2)设点 T 在直线 x = 1 2 上,过 T 的两条直线分别交 C 于 A 、 B 两点和 P , Q 两点,且 TA ⋅ TB = TP ⋅ TQ ,求直线 AB 的斜率与直线 PQ 的斜率之和.
如图,在三棱锥 A - BCD 中,平面 ABD ⊥ 平面 BCD , AB = AD , O 为 BD 的中点.
(1)证明: OA ⊥ CD ;
(2)若 △ OCD 是边长为1的等边三角形,点 E 在棱 AD 上, DE = 2 EA ,且二面角 E - BC - D 的大小为 45 ° ,求三棱锥 A - BCD 的体积.