设,解关于的不等式.
已知数列满足.(1)当时,求数列的前项和;(2)若对任意都有成立,求的取值范围.
某旅游景区的观景台P位于高为的山峰上(即山顶到山脚水平面M的垂直高度),山脚下有一段位于水平线上笔直的公路AB,山坡面可近似地看作平面PAB,且为以为底边的等腰三角形.山坡面与山脚所在水平面M所成的二面角为,且.现从山脚的水平公路AB某处C0开始修建一条盘山公路,该公路的第一段,第二段,第三段,…,第n-1段依次为C0C1,C1C2,C2C3,…,Cn-1Cn(如图所示),C0C1,C1C2,C2C3,…,Cn-1Cn与AB所成的角均为,且.(1)问每修建盘山公路多少米,垂直高度就能升高100米? 若修建盘山公路至半山腰(高度为山高的一半),在半山腰的中心Q处修建上山缆车索道站,索道PQ依山而建(与山坡面平行,离坡面高度忽略不计),问盘山公路的长度和索道的长度各是多少?(2)若修建盘山公路,其造价为万元.修建索道的造价为万元.问修建盘山公路至多高时,再修建上山索道至观景台,总造价最少?
如图,的外接圆的半径为,所在的平面,,,,且,.(1)求证:平面ADC平面BCDE.(2)试问线段DE上是否存在点M,使得直线AM与平面ACD所成角的正弦值为?若存在,确定点M的位置,若不存在,请说明理由.
衡阳市八中对参加“社会实践活动”的全体志愿者进行学分考核,因该批志愿者表现良好,学校决定考核只有合格和优秀两个等次.若某志愿者考核为合格,授予1个学分;考核为优秀,授予2个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量,求随机变量的分布列及数学期望.
已知,其中,,.(1)求的单调递减区间;(2)在中,角所对的边分别为,,,且向量与共线,求边长和的值.