设f '(x)和g'(x)分别是f(x)和g(x)的导函数,若f '(x)g'(x)≤0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性相反.若函数f(x)=x3-2ax与g(x)=x2+2bx在开区间(a,b)上单调性相反(a<b),则b-a的最大值为______.
函数的单调递增区间为。
已知是R上的偶函数,且满足时,=。
已知,则a=。
函数的值为。
方程的解x=。