甲乙两人进行掰手腕比赛,比赛规则规定三分钟为一局,三分钟内不分胜负为平局,当有一人赢3局就结束比赛,否则继续进行,根据以往经验,每次甲胜的概率为,乙胜的概率为,且每局比赛胜负互不受影响.(Ⅰ)求比赛4局乙胜的概率;(Ⅱ)求在2局比赛中甲的胜局数为ξ的分布列和数学期望;(Ⅲ)若规定赢一局得2分,平一局得1分,输一局得0分,比赛进行五局,积分有超过5分者比赛结束,否则继续进行,求甲得7分的概率.
在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,(1)根据以上数据建立一个的列联表;(2)能否在犯错误的概率不超过0.05的前提下认为晕机与性别有关?
在极坐标系中,已知圆与直线相切,求实数a的值。
实数m取什么值时,复数z=(m2-5m+6)+(m2-3m)是(1)实数?(2)虚数?(3)纯虚数?(4)表示复数z的点在第三象限?
求证:(1); (2) +>+。
对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知(,为自然对数的底数),(1)求的递增区间;(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。