当时,函数的最小值为 .
矩阵A=的一个特征值为λ,是A的属于特征值λ的一个特征向量,则A﹣1= .
在一个二阶矩阵M的变换作用下,点A(1,2)变成了点A′(4,5)点B(3,﹣1)变成了点B′(5,1),那么矩阵M= ,圆x+2y﹣1=0经矩阵M对应的变换后的曲线方程 .
B.(选修4﹣2:矩阵与变换)已知矩阵M的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量.
将正整数1,2,3,4,…,n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算各行和各列中的任意两个数a,b(a>b)的比值,称这些比值中的最小值为这个数表的“特征值”.若aij表示某个n行n列数表中第i行第j列的数(1≤i≤n,1≤j≤n),且满足aij=,当n=4时数表的“特征值”为 .
不等式的解集是 .