如图,在中,是的角平分线,的外接圆交于,. (1)求证:;(2)若,,求的长.
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值元的概率分布列.
已知为的三个内角,其所对的边分别为,且.(1)求角的值;(2)若,求的面积.
等差数列中,(1)求的通项公式;(2)设
已知函数.(1)当时,求的最小值;(2)若函数在区间上为单调函数,求实数的取值范围;(3)当时,不等式恒成立,求实数的取值范围.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当 时,求实数取值范围.