如图,已知球O是棱长为1的正方体ABCD﹣A1B1C1D1的内切球,则以球心O为顶点,以球O被平面ACD1所截得的圆为底面的圆锥的体积为 .
设抛物线的焦点为,准线为,为抛物线上一点,⊥,为垂足.如果直线的斜率为-,那么||= .
若,则的值为 .
定义在R上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,,则的值为 .
已知P是双曲线上一点,F1、F2是左右焦点,⊿P F1F2的三边长成等差数列,且∠F1 P F2=120°,则双曲线的离心率等于
在斜三棱柱中, 底面是以∠ABC为直角的等腰三角形, 点在平面ABC上的射影为AC的中点D, AC=2,=3,则与底面ABC所成角的正切值为