在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=,.(1)求sinC和b的值;(2)求cos的值.
(.(12分)设椭圆:的左、右焦点分别是,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过点.(1)求椭圆的方程;(2)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于两点,求面积的最大值.
( (12分)直四棱柱中,底面是等腰梯形,,,为的中点,为中点.(1) 求证:;(2) 若,求与平面所成角的大小.
(12分)某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是,每次测试通过与否相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.(1)求该学生考上大学的概率;(2)如果考上大学或参加完5次考试就结束,求该生至少参加四次考试的概率.
(10分)已知数列的前项和,。(1)求数列的通项公式;(2)记,求
(本小题满分12分)在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点。(1)证明:A1B1⊥C1D;(2)当的大小。