若存在实常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”.已知函数.有下列命题:①在内单调递增;②和之间存在“隔离直线”, 且b的最小值为-4;③和之间存在“隔离直线”, 且k的取值范围是;④和之间存在唯一的“隔离直线”.其中真命题的个数有( ).
某单位200名职工中,年龄在岁以上占,岁占,岁以下占;现要从中抽取40名职工作样本。若用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第组抽出的号码为,则第8组抽出的号码应是___①_;若用分层抽样方法,则40岁以下年龄段应抽取__②_人.①②两处应填写的数据分别为().
曲线与直线及所围成的封闭图形的面积为().
用三段论推理命题:“任何实数的平方都大于,因为是实数,所以”你认为这个推理().
把化为二进制的数是().
设为虚数单位,则复数的虚部为 ().