设函数fx=ln1+x,gx=xf`x,x≥0,其中f`x是fx的导函数. g1x=gx,gn+1x=ggnx,n∈N+, (1)求gnx的表达式; (2)若fx≥agx恒成立,求实数a的取值范围; (3)设n∈N+,比较g1+g2+⋯+gn与n-fn的大小,并加以证明.
(本小题满分14分) 已知,求下列各式的值: (1);(2).
已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于、两点。 (1)求曲线的方程; (2)试证明:在轴上存在定点,使得总能被轴平分。
在数列中,,。 (1)设,求数列的通项公式; (2)求数列的前项和。
函数是定义在上的偶函数,当时,。 (1)当时,求的解析式; (2)若,试判断在的单调性,并证明你的结论。
已知,在函数的图象上有、、三点,它们的横坐标分别为、、。 (1)若的面积为,求; (2)判断的单调性。