函数f(x)=ax2+bx+c(a≠0)的图象关于直线对称。据此可推测对任意的非0实数a、b、c、m、n、g关于x的方程m[f(x)]2+n f(x)+g=0的解集不可能是( )
.若函数的图像与轴围成的封闭图形的面积为,则的展开式中的常数项为()
已知表示不超过实数的最大整数,为取整数,是函数的零点,则等于()
已知向量的夹角为,且,在△ABC中,,, D为BC边的中点,则()
.一个几何体的三视图如图所示:其中,主视图中△ABC的边长是2的正三角形,俯视图为正六边形,那么该几何体的体积为()
方程所表示的轨迹是焦点在()