一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4; 白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (1)求取出的4张卡片中,含有编号为3的卡片的概率. (2)再取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.
已知等差数列满足:=2,且成等比数列. (1)求数列的通项公式. (2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.
已知函数的图像关于直线对称,且图像上相邻两个最高点的距离为. (1)求和的值; (2)若,求的值.
已知函数。 (1)求的单调区间; (2)若在区间上的最小值为e,求k的值。
某商场预计从2013年1月份起的前x个月,顾客对某商品的需求总量p(x)(单位:件)与x的关系近似的满足,且)。该商品第x月的进货单价q(x)(单位:元)与x的近似关系是 (1)写出这种商品2013年第x月的需求量f(x)(单位:件)与x的函数关系式; (2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问该商场2013年第几个月销售该商品的月利润最大,最大月利润为多少元?
已知函数。 (1)当时,求曲线在处切线的斜率; (2)求的单调区间; (3)当时,求在区间上的最小值。