如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦与.当直线斜率为0时,.(1)求椭圆的方程;(2)求的取值范围.
已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数).若直线与圆相切,求实数的值.
已知矩阵,(1)求逆矩阵;(2)若矩阵满足,试求矩阵.
已知函数,其中.(1)当时,求函数在处的切线方程;(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;(3)已知,如果存在,使得函数在处取得最小值,试求的最大值.
已知数列满足,,,是数列 的前项和.(1)若数列为等差数列.①求数列的通项;②若数列满足,数列满足,试比较数列 前项和与前项和的大小;(2)若对任意,恒成立,求实数的取值范围.
如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.(1)求椭圆方程;(2)设是椭圆上异于的一点,直线交于点,以为直径的圆记为. ①若恰好是椭圆的上顶点,求截直线所得的弦长;②设与直线交于点,试证明:直线与轴的交点为定点,并求该定点的坐标.