已知函数(1)求曲线y=f(x)在(2,f(2))处的切线方程;(2)若g(x)=f(x)一有两个不同的极值点.其极小值为M,试比较2M与一3的大小,并说明理由;(3)设q>p>2,求证:当x∈(p,q)时,.
(本题满分分)用行列式解关于的方程组: ,并对解的情况进行讨论.
(本题满分分,第1小题4分,第2小题4分)已知,,且向量与不共线.(1)若与的夹角为,求·;(2)若向量与互相垂直,求的值.
(本小题满分12分)已知椭圆的离心率为,直线过点,,且与椭圆相切于点.(1)求椭圆的方程;(2)是否存在过点的直线与椭圆相交于不同的两点、,使得?若存在,试求出直线的方程;若不存在,请说明理由.
(本小题满分12分)(理科做)如图,四棱锥中,平面平面,//,,,且,.(1)求证:平面;(2)求和平面所成角的正弦值;(3)在线段上是否存在一点使得平面平面,请说明理由.(文科做)已知函数,其中是常数.(1)当时,求曲线在点处的切线方程;(2)若存在实数,使得关于的方程在上有两个不相等的实数根,求的取值范围.
(本小题12分)在平面直角坐标系中,已知一个椭圆的中心在原点,左焦点为,且过.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,点,求线段中点的轨迹方程.