在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A、B两点,求|AB|.
已知椭圆,直线与椭圆交于A、B两点,M是线段AB的中点,连接OM并延长交椭圆于点C.直线AB与直线OM的斜率分别为k、m,且.(1)求的值;(2)若直线AB经过椭圆的右焦点F,问:对于任意给定的不等于零的实数k,是否存在a∈,使得四边形OACB是平行四边形,请证明你的结论;
已知集合A=,B={x|x2-2x-m<0},(1)当m=3时,求A∩(∁RB);(2)若A∩B={x|-1<x<4},求实数m的值
已知椭圆E:(0)过点(0,),其左焦点与点P(1,)的连线与圆相切。(1)求椭圆E的方程;(2)设Q为椭圆E上的一个动点,试判断以为直径的圆与圆的位置关系,并证明
如图,P—ABCD是正四棱锥,是正方体,其中 (1)求证:;(2)求平面PAD与平面所成的锐二面角的余弦值;(3)求到平面PAD的距离
在△ABC中,a、b是方程x2-2mx+2=0的两根,且2cos(A+B)=-1(1)求角C的度数; (2)求△ABC的面积